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Abstract, A comprehensive study of the remanence curve properties of an assembly of non- 
interacting single-domain particles with cubic magnetonyslalline anisolmpy has teen perfomed. 
The theoretical calculations presented represent an extension of lhe zero-temperalure analysis 
of loffe and Heuberger to include the effecfs of thermally activated magnetization reversal and 
particle size disbibution. The numerical validity of these computations is completed through the 
analris of interaction-sensitive Henkel plots. which confrrm the non-interacting nature of the 
independently calculated remanence curves. The model system shows behaviour with intuition 
and analogous to similar models for the uniaxial case, wilh the exception of the expected increase 
in maximum remanence and decrease in energy M e r .  i.e. remanence coacivity, 

1. Introduction 

In this paper we calculate remanence curves for systems of non-interacting single-domain 
particles with cubic magnetocrystalline anisotropy. Included in the model is a log-normal 
particle size distribution and the effects of thermal activation. The predictions made in this 
study are primarily based upon the theoretical and computational techniques described in 
the companion hysteresis loop model [I]. 

The measurement and interpretation of remanence curves as a means to characterize 
a wide variety of magnetic materials, especially those suitable for magnetic recording 
purposes, has received significant attention recently [2-4]. In particular, this attention 
has focused on the sensitivity of remanence curves to many-bady interaction effects within 
particulate and thin-film recording media 15-71. and on the fundamental point that remanence 
measurements reflect only the irreversible changes in the magnetization, and as such examine 
the reversal process. 

Theoretical predictions of remanence curves have been previously reported by a number 
of authors. Predictions of remanence curves for uniaxial fine particle systems have generally 
been based upon the methods of Stoner and Wohlfarth [SI. Gaunt [91 and Joffe 1101 who 
extended the original Stoner-Wohlfarth theory to include the thermal dependence of the 
remanence coercivity for a uniaxial singledomain particle. Later Chantrell and co-workers 
[ I l ,  121 calculated the isothermal remanent magnetization acquired from the demagnetized 
state of a more realistic system of fine pdc le s  with the magnetization easy axis aligned 
and randomly oriented with the applied field respectively. More recently, Walker and co- 
workers [ 131 have further extended this work by considering the effects of partial easy axis 
alignment with the applied field. These three final works have all incorporated the effects 
of thermally activated magnetization reversal and a log-normal distribution of particle sizes. 
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Attempts at a similar treatment for multiaxial particle systems have been more limited. 
Joffe and Heuberger [ 141 have previously calculated the remanence of multiaxial systems 
at OK. Consequently their calculations did not include the effects of thermally activated 
reversal, and were based upon a system of identical particle sizes. More recently, Geshev 
and co-workers [ 15,161 have repolted the results of an alternative approach to the prediction 
of hysteresis loops and remanence curves of multiaxial systems by considering the thermal 
variation of the saturation moment and anisotropy constants. However, this watment does 
not take account of thermal activation of reversal. 

2 The remanence curve model 

Remanence curves are generally measured from either a demagnetized state, commonly 
known as an isothermal remanence curve (IRM), or from a previously saturated state, known 
as a DC demagnetization curve (ED). The IRM curve, therefore, is a measure of the increase 
in remanence from an initially zero value to the positive saturation remanence, after the 
successive applicaiion and removal of increasingly positive Dc fields. The analogous DCD 
curve is a measure of the reverse remanence from, say. the initially positive saturation 
remanence value to the negative saturation remanence, after the successive application and 
removal of increasingly negative applied fields. 

2.1. The basic model 

As previously discussed, the remanence is the magnetization remaining when the applied 
field is reduced to zero. Consequently it is necessary to compute the angle the magnetization 
vector relaxes into following the application and removal of an applied field. As with 
the preceding hysteresis loop paper [I], the angular coordinate systems adopted for these 
remanence curve calculations was first defined by Joffe and Heuberger [I41 and is illustrated 
in figure 2 of [I]. Specifically, the orientation of any particle relative to the applied field 
- H  may be expressed in terms of the angles (8,  I). Similarly, the orientation of the 
magnetization vector relative to the principle anisotropy axes may be described in terms of 
the angles ( y .  6). The anisotropy constant is taken to be positive (i.e. K > 0) throughout 
this study. 

The basic computational procedure for calculating the remanence of the system is as 
follows. 

(1) The magnetic configuration of the model is initiated depending on the remanence 
curve studied. 

(2) The particle orientation angle (6'. $) are both incremented from 0 to n/2 in steps 
of n/90 for each remanence curve field value. 

(3) A steepest descent procedure is performed to obtain an approximate energy minimum 
for each field value. A Newton-Raphson method, for functions of two variables, is then 
used to obtain an accurate energy minimum and calculation of the magnetization angles 
(Y. 6). 

(4) The applied field, h, is set to zero and the direction of the magnetization, I, is 
assumed to relax to the nearest easy axis, from which position the contribution to the 
remanence may be calculated (see sections 2.21 and 2.2.2). 

2.1.1. Isothermal remanence. Considering the isothermal remanence (IRM) curve model 
first, the system is stalted from an initially demagnetized state in zero applied field. Thus, 
the only particles that contribute to the isothermal remanence are those whose magnetization 
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vector has traversed the energy barrier into the positive field direction and remain locked 
in their new positions when the field is removed. 

Since only irreversible changes contribute to the remanence, if no transition has occurred 
the particle contribution to the remanence is represented by 

Ai,, = 0. (1) 

After an irreversible change into the positive field direction, the particle contribution to 
the remanence is given by 

1 .  A h  = -sm 28 for y = 0, ff = 0 

2 .  x Az3=-ssln2Bcos+ for y = - , f f  = O  
X 2 
2 .  x 37 

AK4= -san20sin* for y =  - ,ff  = - 
X 2 2 

(2) 

(3) 

(4) 

where the calculation of these remanence contributions is derived from the reduced 
magnetization formula in [I]: 

IT 

1 - I  = -  = - ' ~ ' ~ ' [ c o s y c o s ~ + s i n y s i n ~ c o s ( ~ - ~ ) ] s i n ~ d e d ~ .  
Is x 0 

The magnetization vector orientation used during the calculation of the remanence at 
zero field corresponds to the principal anisotropy axes nearest to the ( y .  f f )  values obtained 
during the previous energy minimization routine, in the presence of the reduced applied 
field h. This is performed for all (e, +) in the interval (0.4). taking steps of x/90 in both 
angles. Thus, to predict IRM curves for a system of isolated single particles, the following 
integral must be performed: 

where n runs from 1-4 for the complete integration, but has an integer value between 1 4  
for an individual particle dependent upon the applied field relative to HK and the particle's 
current condition of reversal, i.e. superparamagnetic, blocked following reversal to the 
applied field direction or blocked in the initial orientation direction. Additional information 
on this calculation is given in section 4 of [l]. 

2.1.2. DC demagnetization remanence. To obtain a Dc demagnetization remanence curve the 
sample is first saturated in a large field (for the purposes of this study taken to be negative) 
and then removed to give a value for the saturation remanence ( I ,  (w)). A small positive Dc 
field h is applied in the opposite direction to the saturating field and then removed to reveal 
the remanent state. As the reverse field h increases, the potential for the magnetization 
vectors to make an irreversible transition over the energy banier increases. 

In zero field, by extension of the hysteresis loop calculations in [l], the individual 
contribution that a particle makes to the remanence is given by 

(7) 
2 

A& = - - [cosy cos 0 + sin y sin0 cos (e - ff)]  sin 0 d0 dp.  
IT 
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The possible remanent values of ( y ,  B) in the negative saturating field direction are 
(O,O), ($, O), (I,,?). Thus, if the energy barriers are sufficiently reduced to permit 
irreversible transitions, the magnetization vectors will move to new minima where the 
contributions to the remanence at those values of ( y ,  B) are given by 

Clearly, if a magnetization vector subsequently resides in the positive reverse field 
direction the values of the possible remanence contributions are represented by 

As with the associated IRM curve, the magnetization vector orientation used during the 
calculation of the remanence corresponds to the principal anisotropy axis nearest to the 
( y ,  9 )  values obtained in the presence of the reduced applied field h. The calculation is 
performed for all (0, +) in the interval (0. f), taking steps of x/90 in both angles. The total 
remanence is then obtained by a double integration over all the orientation configurations 
of (0, +), such that 

where n runs from 1-6 for the complete integration over all particles, but has an integer 
value between 1-6 for a given particle. 

2.2. The inclusion of thermal energy 

The effects of thermal agitation on the remanence properties of both the RM and DCD curves 
are obtained using the same criterion as for the previously reported hysteresis loop model, 
namely 

where Tmd is the reduced temperature and Aq is the reduced energy barrier. Thus, if the 
thermal energy associated with a particle is greater than the energy barrier, a transition over 
the energy barrier takes place. 
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2 3 .  The inclusion of a particle size distribution 
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The effects of a particle sue  distribution have been investigated for both types of remanence 
curve by the inclusion of a volume fraction log-normal particle size distribution f (y), given 
bY 

where y(= D / D v )  is the reduced particle diameter and Dv the median particle diameter. 
The standard deviation of the distribution is represented by U .  

Clearly, the superparamagnetic particles will not contribute to the remanence since their 
magnetization vectors can relax to a random configuration in zero field. Thus, the equation 
describing the IRM curve for a fineparticle system with cubic anisompy and log-normal 
particle size distribution, for H c HK. is given by 

where n has an integer value between 2-4 for an individual particle, corresponding to the 
appropriate anisotropy configuration. The term Fbz is related to the proportion of blocked 
particles that have made the transition into the positive field direction in reduced field, h, 
and is given by 

If H t HK, all the blocked particles will have been rotated into the field direction and 
the remanence is then described by 

Where Fb) is given by 

rm 

Thus, (19) with (20) represents the saturation remanence for the system. 
Similarly, the Dc demagnetization remanence of the system for H c HK is given by 

where n I = 1 ,  2 or 3 and n2 = 4, 5 or 6 for a given particle in (8H13) inclusively. The 
term Fbz is defined as in (18). and in a similar way is given by 

r m  
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Thus, the A&,,, term of the integral in (21) corresponds to those particles that have not, 
as yet, reversed their magnetization vector to the direction of the reversing field, h. Likewise, 
the A i h z  term is associated with the particles that have reversed their magnetization. 

As with the IRM curve, for reverse fields in excess of the anisotropy field, HK, all the 
blocked particles will have reversed their magnetization direction, so that the saturation 
remanence is given by 

where Fu is given by (20). 
Futther details of the particle size distribution function, f (y) ,  and the associated 

calculations based on this distribution function, are given in the paper on our hysteresis 
loop calculations [I]. 

2.4. Switching field distribution 

The differentials of the two primary remanence cwes, termed xm, give a measure of 
the switching field distribution in the material. The technique is commonly used to 
characterize recording media [17]. In the case of the model systems examined in this 
work the distribution arises due in part to the particle size distribution, since the value of 
the anisotropy constant is invariant for the given system. The orientation of the easy axes 
to the applied field direction will serve to increase the width of the distribution. In the work 
that follows the distributions have all been calculated from the IRM curves since data from 
the DCD curves would give the same result because there are no interactions in the system 
[IS]. We have confirmed this result as a check on the self-consistency of our calculations. 

3. Predictions of the single-particle volume model 

3.1. Isorherma1 remanence curves 

Figure I shows IRM curves for a monodispersed fine-particle system with cubic anisotmpy 
and over a range of reduced temperatures, Td. 

At T =OK, the remanence is zero until the applied field h = 0.274, as only reversible 
changes can occur for h 4 0.274. This prediction is as expected from our previous hysteresis 
loop study, which predicted that the first pm.cle to make an irreversible rotation over the 
energy barrier has an orientation of (0 = O", @ = 45") at the critical field of h = 0.274. 
Beyond h = 0.274 the remanence curve rises smoothly with field until it reaches its 
saturation remanence value when h = 0.78. 

As with the hysteresis study, as the reduced temperature increases the increased thermal 
energy enables particles to overcome their energy barrier at lower applied fields. The 
reversible proportion of the curve decreases and the curves reach their saturation value in 
lower applied fields. 

3.2. DC demagnetization remanence curves 

Figure 2 illustrates the DC demagnetization curves for a fine-particle system with cubic 
anisotropy and identical particle size over a range of reduced temperatures, T,. As Tma 
increases from zero, the value of the remanence coercivity, hr, (where id (hJ = 0), decreases 
from its maximum value of 0.333 as the effects of increased thermal fluctuation become 
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(I 0.2 0.4 0.e 0.8 1 

Reduced f ie ld ,  h 

Figure 1. IRM curves for a srjtem of moncdispeMd m l e s  with cubic anisotmpy. 

significant. Figure 3 indicates the variation of the remanence coercivity, h,, as a function of 
reduced temperature, Td. At Trrd = 0.125, h, will be equal to zero due to the introduction 
of superparamagnetic behaviour. 

In both the IRM curves of figure 1 and the Dc demagnetization curves of figure 2 it 
is interesting to note that saturation remanence is attained prior to the application of the 
anisotropy field HK. This effect is contrary to that predicted and experimentally observed 
in uniaxial systems, where fields of magnitude at least HK are necessary for saturation. The 
reasons for this discrepancy lie in the complex energy surface associated with multiaxial 
particles. Thus, it is possible for magnetization reversal to take place with the magnetization 
vector following a path of least energy and traversing round a hard axis energy barrier, in 
lower applied fields than HK, rather than crossing a hard axis directly. 

.. ., . . .... . . . . ' 0.8 

0.4 

0 

-0.4 

-0.8 

0 0.2 0.. 0.B 0.8 I 

Reverse f ie ld ,  h 
Figure 2. m curves for a syslem of monodispersed particles~with cubic anisotropy. 
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h. 

0 0.02 0.04 0.06 0.08 0.L 0.12 0.14 
m 

0 0.02 0.04 0.06 0.08 0.L 0.12 0.14 
m 
'red 

Figure 3. EfSect of Td on h, for a system of monodispersed panicles with cubic anisohopy. 

0 0.1 0.2 0.3 0.1 

Reduced f ie ld,  h 

Figure 4. IRM curves for a system of particles at IWK with K = 2 x Idergcc-I, 
4 = 4Wemucc-' and a = 0.3. 

4. Predictions for a system with a particle size distribution 

4.1. Isothermal remanence curves 

Figure 4 shows IRM curves for isolated particles, assuming a log-normal particle size 
distribution, as a function of variable median particle diameter, D,. These predictions refer 
toatemperatureof lOOKwith K =2x106ergcc-',u =0.3andIs =400emucc-'. Asthe 
median diameter is increased from 75A to 200A. the magnitude of the energy barrier also 
increases. Thus, larger applied fields are necessary to reduce the magnimde of the barriers so 
that magnetization reversal may occur. The increase in saturation remanence with increasing 
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median diameter is attributable to the reduction in the fraction of superparamagnetic particles 
present in the system. 

0 0.1 0.2 0.3 

Reduced field, h 

Figure 5. BM curves for a s y s m  of &des at 15OK with 0, = IWA. Is = 4WemuEc-' 
and n = 0.3. 

Figure 5 indicates a similar set of IRM curves at 150K where the median diameter 
is held constant at IOOA and the anisotropy constant K is increased from 1 x IO6 to 
5 x 106ergcc-'. These remanence curves indicate a similar variation to that predicted as 
a function of increasing median diameter. However, as a consequence of increasing K, 
the anisotropy field HK (= 2 K / f s )  is also increased, making the system more difficult to 
magnetize. Experimentally it is usually more desirable to maximize remanence by increasing 
the median diameter D, and maintaining a small value of K .  since it is generally easier 
experimentally to increase D, rather than increase the value of K [19]. 

The dependence of IRM curves on temperature is shown in figure 6 (0, = ]CO.&, 
K = 2x 106ergCc-', U = 0.3, I,  = 4COemucc-'). Clearly, as the temperature is decreased 
the asscciated decrease in the thennal energy has the effect of raising the energy barrier, thus 
requiring higher applied fields to achieve magnetization reversal. The saturation remanence 
is also increased, as the temperature is reduced, due to the decrease in the fraction of 
superparamagnetic particles present in the system. 

Figures 7 and 8 show a set of IRM curves and their associated switching field distributions 
(SFD) for a system at 40K (with K = 2.8 x 106ergCc-', U = 0.3, Is = 4OOemucc-') and 
variable median diameter 0,. Clearly as the median diameter increases the remanence 
curve becomes sharper and the SFD curve becomes narrower as the particles reverse their 
magnetization over a smaller range of field values. 

The data illustrate clearly an important effect of the finite temperature in relation to 
experimental observations. At OK the IRM curve has a discontinuity at the minimum field 
required to bring about ineversible rotation. Figure 1 shows that for a monodiipersed 
system at a finite temperature the RM curves retain an initial steep increase, albeit at a 
greatly reduced field; thermal agitation is not sufficient to produce a significant spread of 
switching fields for a given particle size. However, the introduction of hemal agitation 
does have the effect of introducing a dependence of the switching probability on the particle 
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8 PO0 14 I ...... ;K .. ....... .? . . . . .  
0.1 * 300 

. . . . . . . . . . . . . . . . . .  

0 0.1 0.z 0.3 0.4 0.5 

Reduced field, h 

Figure 6. LRM c w e s  for a splem of cubic particler wiib D, = I W A. 

. . . .  

1 .......... 

Reduced field, h 

Figure 7. IRM CUNM for a syslem of multiaxial panicles m 40K with K = 28 x 16 ergcc-I. 
a = 0.3 and I ,  = 400emucc-'. 

size. Consequently, in a system with a particle size distribution the form of the IRM curve 
is drastically altered, as can be Seen in figures 4-7, in that the curve increases smoothly 
from zero as a result of the distributed energy barrier. These data have a form that is more 
consistent with the experimental data, and similarity with the previously considered uniaxial 
case [12], and indicate the importance of calculations at a finite temperature for comparison 
with experimental data. 

4 2 .  DC demagnetization remanence curves 

Figure 9 illustrates a family of predicted DCD curves for a fine particle system at a 
temperature of 77K with K = 2 x 106ergcc-', U = 0.3 and I,  = 4M)emucc-I. Both 
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Susceptibility (a...) 

D" / x 
sm 150 

sm zoo 
Sm 300 

- 

- 

Figure 8. SFD for a system of multiaxial panicles at 4LlK with K = 28 Y IO6 q c e - ' .  U = 0.3 
and I ,  = 4CMemucc-'. 

the saturation remanence and the remanent coercivity, h,, are observed to increase as 0, 
increases from 908, to 2008,. This is expected, since an increase in D, will reduce the 
fraction of superparamagnetic particles present in the sample and increase the magnitude 
of the energy barrier. For the curve with Dv = XHIA, the saturation remanence and 
remanence m i v i t y  values are close to the maximum values obtained at OK (0.823 and 
0.333 respectively), indicating that most of the particles in the assembly are blocked at this 
value of median particle diameter. 

A similar set of DCD remanence curves at l00K are indicated in figure 10, where the 
median diameter is held constant at 0, = 908, and the anisotropy constant, K, is varied 
between 2 x 106 and 6 x 106ergcc-'. Even at the largest value of anisotropy constant, 
K = 6 x 106 ergcc-', the saturation remanence does not attain the maximum possible value 
of 0.823 because of the significant contribution of the superparamagnetic particles present 
in the system. 

Figure 11 illustrates the variation of h, with temperature for a system with cubic 
anisotropy, where 0, = l00A. K = 2 x l@ergcc-', U = 0.3 and I, = 4OOemucc-'. The 
more general case of this variation, independent of median particle diameter a. is shown 
in the insert of figure. 11 as a function of the temperature-related ratio Dp/Dv,  again for a 
system where u = 0.3. 

4.3. Interaction curves 

Much recent work into the measurement and characterization of interactions in magnetic 
systems using remanence CUNH has been based upon the examination of the Wohlfarth 
relation [I81 

Id ( H )  = I ,  (03) - 21, ( H )  . (24) 

This equation relates the two principal remanence curves in the absence of interparticle 
interactions. Henkel E201 first used this relationship to examine interactions by plotting 
the DC demagnetization remanence (4) as a function of the isothermal remanence (Ir). 
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0 0 2  0.. 0,s 

Reverse field, h 

Figure 9. DO curves for a system at 77K with K = 2 x I06ergcc-' and o = 0.3. 

0 0.1 0 5  0.3 0.4 

Reverse field, h 

Figure 10. rxn cwes far a system at 100 K with 4. = 90 h aud U = 0.3. 

Thus, in the absence of interactions, a linear relationship should be obtained. Moreover, 
this technique can also be used as a valuable tool to confirm the self-consistency of the 
numerical computations and the accuracy of the energy minimization algorithm used in our 
computations. 

Figure 12 shows a set of isothermal and Dc demagnetization remanence curves for a 
system with a mean particle diameter of llOA and u = 0.3, K = 2 x 106ergcc-' over 
a range of temperatures. As expected the shape of the remanence curves changes with 
temperature and the maximum value of saturation remanence decreases with increasing 
temperature. 

Figure 13 is the ass9ciated Henkel plots (Id against Ir) for the data sets in f i p  12. The 
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0 0.5 L 1.5 2 2.5 3 3.5 

Q,/% 

\ 

0 150 300 450 600 

Temperature (Kelvin) 

Figure 11. Effect of tempelature on h, for a syslem with cubic anisotropy, where D, = 100 A, 
K = 2 x 106ergcc-' o = 0.3 and I ,  = 4CQemucc-'. Inset Ihc effect of D,l& on h, for a 
system with cubic anisotropy. 

linearity displayed by the four data sets in figure 13 indicates that the Wohlfarth relationship 
denoted in (24) is validated. It is usual to display Henkel plots of the remanence curve data 
normalized with respect to the maximum saturation remanence. However, on this occasion, 
to enable the variations in the maximum saturation remanence to be observed this Henkel 
plot data is displayed in terms of the absolute reduced remanence. 

In principle it would not necessarily be expected that the Henkel plot for cubic systems 
would be linear, since the initial magnetization configuration is different in each case, i.e. 
a random distribution for the IRM case and all the moments lying in the nearest easy axis 
direction to the field direction for the DCD case. However, it must be realized that the 
cubic anisotropy gives rise to a complex energy surface, unlike the uniaxial case where all 
reversals must traverse a hard direction. Thus by moving across the energy surface avoiding 
hard axes, the energy barrier distribution in both the IRM and E D  cases is the same. Hence 
a linear Henkel plot is expected in the absence of interactions. 

Figure 13 is therefore a significant result, which justifies the validity of the whole 
computational approach of this study and, in particular. the accuracy of the numerical 
energy minimization algorithms used. This result, however, is in marked contrast to the 
a n t  work of Geshev et a1 [I61 on multiaxial fine-particle systems, where non-linear 
Henkel plots were obtained. At present we cannot account for this discrepancy. 

4.4. The temperature decay of remanence 

Temperature decay of remanence curves represent the variation of saturation remanence 
with temperature and are often used to experimentally determine the magnitude of the 
anisotropy constant K [21]. Figure 14 shows the predicted decay of remanence curves for 
a multiaxial material with cubic anisotropy for a range of median particle diameters, 0,. 
where K = 2 x 106ergcc-', U = 0.3 and I ,  = 4oOemucc-'. 

As expected, maximum remanence is achieved at OK when all the particles in the system 
are blocked. As the temperature increases, the fraction of superparamagnetic particles 
present increases and the remanence decays logarithmically with temperature. This data is 
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Reduced Remanence 
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Ir 45 K 

+ Id 45 K 
Ir 65 K 
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++ lr 85 K 
4- Id 85 K 
4- Ir 150 K 

-S- Id 150 K 

- 

-0.6 - 
0 0.1 0.2 0.3 0.4 0.5 

Reduced Field 

Figure U. Pairs of principal remanence cyrns as a function of temperafur% D, = IlOA. 
K =2xlO6ergcc-' ,a=0.3,I .=QWemu~-' .  

id=Id / I s  
I I 

. .. . , . . . .. . .. . . 

-t- T =  6 5 K  
--*i T =  8 5 K  

... 
0 0.1 0.2 03 0.4 0.5 0.6 0.7 

L = V L  
Figurr 13. Henkel plots for manence w e  data displayed in ihe previous figure 

similar in form to the experimental observations for uniaxial systems [21]. At the present 
time we are not aware of any data of this type for systems with cubic anisotropy that would 
enable an accurate measure of the anisotropy constant K. when the remanence has decayed 
to half its value at OK, half of the magnetic volume has relaxed. The temperature at which 
this occurs is called the mean blocking temperature, TK. Since the median diameter is 
known, a value of the effective anisotropy constant, where K =- 0, can be estimated from 
the relation 
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Temperature (Kelvin) 

Figure 14. Llecay of remanence curves for a system with K = 2 x 1O6ergw-'. I = 0.3 and 
I, ="nice-'. 

5. Conclusions 

In this paper we have used a numerical model to predict the two principal magnetizing and 
demagnetizing remanence curves for non-interacting single-domain fineparticle systems 
with cubic anisobopy. The effects of temperature. particle size and particle size distribution 
have been extensively examined. The self-consistency of our predictions has been 
confirmed through a comparison of pairs of independently obtained remanence curves and 
an examination of Henkel plots. 
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